Machine learning is the study that allows computers to adaptively improve their performance with experience accumulated from the data observed. Our two sister courses teach the most fundamental algorithmic, theoretical and practical tools that any user of machine learning needs to know. This first course of the two would focus more on mathematical tools, and the other course would focus more on algorithmic tools. [機器學習旨在讓電腦能由資料中累積的經驗來自我進步。我們的兩項姊妹課程將介紹各領域中的機器學習使用者都應該知道的基礎演算法、理論及實務工具。本課程將較為著重數學類的工具,而另一課程將較為著重方法類的工具。]



機器學習基石上 (Machine Learning Foundations)---Mathematical Foundations

Dozent: 林軒田
48.966 bereits angemeldet
Bei enthalten
(932 Bewertungen)
Kompetenzen, die Sie erwerben
- Kategorie: Mathematical Modeling
- Kategorie: Algorithms
- Kategorie: Probability & Statistics
- Kategorie: Supervised Learning
- Kategorie: Applied Mathematics
- Kategorie: Machine Learning
- Kategorie: Theoretical Computer Science
- Kategorie: Regression Analysis
- Kategorie: Classification And Regression Tree (CART)
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
2 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 8 Module
what machine learning is and its connection to applications and other fields
Das ist alles enthalten
5 Videos5 Lektüren
your first learning algorithm (and the world's first!) that "draws the line" between yes and no by adaptively searching for a good line based on data
Das ist alles enthalten
4 Videos
learning comes with many possibilities in different applications, with our focus being binary classification or regression from a batch of supervised data with concrete features
Das ist alles enthalten
4 Videos
learning can be "probably approximately correct" when given enough statistical data and finite number of hypotheses
Das ist alles enthalten
4 Videos1 Aufgabe
what we pay in choosing hypotheses during training: the growth function for representing effective number of choices
Das ist alles enthalten
4 Videos
test error can approximate training error if there is enough data and growth function does not grow too fast
Das ist alles enthalten
4 Videos
learning happens if there is finite model complexity (called VC dimension), enough data, and low training error
Das ist alles enthalten
4 Videos
learning can still happen within a noisy environment and different error measures
Das ist alles enthalten
4 Videos1 Aufgabe
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Dozent

Mehr von Machine Learning entdecken
Fractal Analytics
Imperial College London
Johns Hopkins University
Politecnico di Milano
Warum entscheiden sich Menschen für Coursera für ihre Karriere?




Bewertungen von Lernenden
932 Bewertungen
- 5 stars
92,59 %
- 4 stars
6 %
- 3 stars
0,64 %
- 2 stars
0,42 %
- 1 star
0,32 %
Zeigt 3 von 932 an
Geprüft am 17. Sep. 2017
A great theoretical course in machine learning, and looking for he second part of the math foundation
Geprüft am 14. Jan. 2021
It is still difficult for a novice especially last 4 lectures.
Geprüft am 19. Feb. 2018
The speaker explains the ML in very clear and easier to understand way. I believe everyone can understand if he/she follow the course.

Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Weitere Fragen
Finanzielle Unterstützung verfügbar,