Ce cours n'est pas disponible en Français (France)

Nous sommes actuellement en train de le traduire dans plus de langues.
IBM

Build RAG Applications: Get Started

Wojciech 'Victor' Fulmyk
IBM Skills Network Team

Instructeurs : Wojciech 'Victor' Fulmyk

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

6 heures pour terminer
3 semaines à 2 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

6 heures pour terminer
3 semaines à 2 heures par semaine
Planning flexible
Apprenez à votre propre rythme

Ce que vous apprendrez

  • Develop a practical understanding of Retrieval-Augmented Generation (RAG)

  • Design user-friendly, interactive interfaces for RAG applications using Gradio

  • Learn about LlamaIndex, its uses in building RAG applications, and how it contrasts with LangChain

  • Build RAG applications using LangChain and LlamaIndex in Python

Compétences que vous acquerrez

  • Catégorie : Generative AI
  • Catégorie : Artificial Intelligence
  • Catégorie : Application Frameworks
  • Catégorie : Prompt Engineering
  • Catégorie : Jupyter
  • Catégorie : User Interface (UI)
  • Catégorie : Application Development
  • Catégorie : Natural Language Processing
  • Catégorie : Large Language Modeling

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Récemment mis à jour !

mai 2025

Évaluations

6 devoirs

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

 logos de Petrobras, TATA, Danone, Capgemini, P&G et L'Oreal

Élaborez votre expertise en Machine Learning

Ce cours fait partie de la IBM RAG and Agentic AI Certificat Professionnel
Lorsque vous vous inscrivez à ce cours, vous êtes également inscrit(e) à ce Certificat Professionnel.
  • Apprenez de nouveaux concepts auprès d'experts du secteur
  • Acquérez une compréhension de base d'un sujet ou d'un outil
  • Développez des compétences professionnelles avec des projets pratiques
  • Obtenez un certificat professionnel partageable auprès de IBM
Certificat professionnel Coursera

Obtenez un certificat professionnel

Ajoutez cette qualification à votre profil LinkedIn ou à votre CV

Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Certificat professionnel Coursera

Il y a 3 modules dans ce cours

This module provides an overview of Retrieval-Augmented Generation (RAG), illustrating how it can enhance information retrieval and summarization for AI applications. The module features a lab designed to introduce the fundamental components of building RAG applications, presented in an easy-to-use Jupyter Notebook format. Through this hands-on project, you’ll learn to split and embed documents and implement retrieval chains using LangChain.

Inclus

3 vidéos2 lectures2 devoirs1 élément d'application1 sujet de discussion3 plugins

In this module, you'll learn to build a Retrieval-Augmented Generation (RAG) application using LangChain, gaining hands-on experience in transforming an idea into a fully functional AI solution. You'll also explore Gradio as a user-friendly interface layer for your models, setting up a simple Gradio interface to facilitate real-time interactions. Finally, you'll construct a QA Bot leveraging LangChain and an LLM to answer questions from loaded documents, reinforcing your understanding of end-to-end RAG workflows.

Inclus

1 vidéo1 lecture2 devoirs2 éléments d'application2 plugins

This module introduces you to LlamaIndex as an alternative to LangChain, helping you understand how to apply your RAG knowledge across different frameworks. You will explore the differences between these frameworks and gain hands-on experience by building a bot with IBM Granite and LlamaIndex that provides individuals with suggestions on engaging in conversations. When completing this project, you will learn about implementing key concepts such as vector databases, embedding models, document chunking, retrievers, and prompt templates to generate high-quality responses. 

Inclus

3 vidéos3 lectures2 devoirs1 élément d'application2 plugins

Instructeurs

Wojciech 'Victor' Fulmyk
IBM
6 Cours53 793 apprenants

Offert par

IBM

En savoir plus sur Machine Learning

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Coursera Plus

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions