Ce cours n'est pas disponible en Français (France)

Nous sommes actuellement en train de le traduire dans plus de langues.
University of Colorado Boulder

Deep Learning for Computer Vision

Ce cours fait partie de Spécialisation Computer Vision

Tom Yeh

Instructeur : Tom Yeh

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

1 semaine à compléter
Ă  10 heures par semaine
Planning flexible
Apprenez Ă  votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

1 semaine à compléter
Ă  10 heures par semaine
Planning flexible
Apprenez Ă  votre propre rythme

Ce que vous apprendrez

  • Improve model performance and training stability using multilayer perceptrons (MLPs) and applying normalization techniques.

  • Implement autoencoders for unsupervised feature learning and design Generative Adversarial Networks (GANs) to generate synthetic images.

  • Train convolutional neural networks (CNNs) for image classification tasks, understanding how layers extract spatial features from visual data.

  • Apply advanced architectures like ResNet for deep image recognition and U-Net for image segmentation.

Compétences que vous acquerrez

  • CatĂ©gorie : Unsupervised Learning

Détails à connaître

Certificat partageable

Ajouter Ă  votre profil LinkedIn

Récemment mis à jour !

août 2025

Évaluations

21 devoirs

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

 logos de Petrobras, TATA, Danone, Capgemini, P&G et L'Oreal

Élaborez votre expertise du sujet

Ce cours fait partie de la Spécialisation Computer Vision
Lorsque vous vous inscrivez à ce cours, vous êtes également inscrit(e) à cette Spécialisation.
  • Apprenez de nouveaux concepts auprès d'experts du secteur
  • AcquĂ©rez une comprĂ©hension de base d'un sujet ou d'un outil
  • DĂ©veloppez des compĂ©tences professionnelles avec des projets pratiques
  • Obtenez un certificat professionnel partageable

Il y a 4 modules dans ce cours

Welcome to Deep Learning for Computer Vision, the second course in the Computer Vision specialization. In this first module, you'll be introduced to the principles behind neural networks and their use in visual recognition tasks. You'll begin by learning the basic building blocks—neurons, weights, biases—and progress toward constructing simple multi-layer perceptrons. Then, you'll discover key activation concepts like batch processing and graph-matrix conversions. Finally, you will visualize neural networks with an emphasis on classification tasks.

Inclus

19 vidéos6 lectures6 devoirs

In this module, you’ll explore two powerful architectures in deep learning: autoencoders and generative adversarial networks (GANs). You’ll begin by learning how autoencoders compress and reconstruct data using encoder-decoder structures, and how reconstruction loss is minimized through backpropagation and gradient descent. You’ll then examine the role of loss functions and optimization techniques in training these models. In the second half of the module, you’ll dive into GANs, where a generator and discriminator compete to produce realistic synthetic data. You’ll study how adversarial training works, how binary cross-entropy loss is applied, and how GANs are used to model complex data distributions. By the end of this module, you’ll be able to implement and evaluate both autoencoders and GANs for representation learning and data generation.

Inclus

13 vidéos2 lectures5 devoirs

In this module, you’ll learn how convolutional neural networks extract features from images and perform classification. You’ll begin by building a tiny CNN by hand and in Excel, exploring convolution, max-pooling, and fully connected layers. Then, you’ll scale up to larger CNN architectures and examine how they process data through multiple convolution and pooling stages. You’ll also study how categorical cross-entropy loss and gradients are computed for training. Finally, you’ll walk through backpropagation across all CNN layers to understand how learning occurs.

Inclus

16 vidéos1 lecture5 devoirs

In this module, you’ll explore two influential deep learning architectures: ResNet and U-Net. You’ll begin by learning how ResNet uses skip connections and residual learning to enable the training of very deep networks, addressing challenges like vanishing and exploding gradients. You’ll examine how residual blocks preserve information and support higher-order logic across layers. Then, you’ll shift to U-Net, a powerful architecture for image segmentation, and study its encoder-decoder structure, skip connections, and upsampling techniques like transposed convolution. By the end of this module, you’ll understand how both architectures enhance learning efficiency and performance in complex vision tasks.

Inclus

17 vidéos2 lectures5 devoirs

Obtenez un certificat professionnel

Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.

Instructeur

Tom Yeh
University of Colorado Boulder
4 Cours10 009 apprenants

Offert par

En savoir plus sur Algorithms

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Coursera Plus

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions