Chevron Left
Back to Custom Models, Layers, and Loss Functions with TensorFlow

Learner Reviews & Feedback for Custom Models, Layers, and Loss Functions with TensorFlow by DeepLearning.AI

4.9
stars
1,095 ratings

About the Course

In this course, you will: • Compare Functional and Sequential APIs, discover new models you can build with the Functional API, and build a model that produces multiple outputs including a Siamese network. • Build custom loss functions (including the contrastive loss function used in a Siamese network) in order to measure how well a model is doing and help your neural network learn from training data. • Build off of existing standard layers to create custom layers for your models, customize a network layer with a lambda layer, understand the differences between them, learn what makes up a custom layer, and explore activation functions. • Build off of existing models to add custom functionality, learn how to define your own custom class instead of using the Functional or Sequential APIs, build models that can be inherited from the TensorFlow Model class, and build a residual network (ResNet) through defining a custom model class. The DeepLearning.AI TensorFlow: Advanced Techniques Specialization introduces the features of TensorFlow that provide learners with more control over their model architecture and tools that help them create and train advanced ML models. This Specialization is for early and mid-career software and machine learning engineers with a foundational understanding of TensorFlow who are looking to expand their knowledge and skill set by learning advanced TensorFlow features to build powerful models....

Top reviews

NP

Feb 4, 2021

It is advanced TF specialization and the way contents are presented in the course are very systematically. Definitely recommended for developers already familiar with TF and wanted to explore further.

MS

Nov 25, 2020

Really great course, it teaches you all about the TF API and how to customize it for your needs, i thought only pytorch can make that as it's really pythonic, but i am a nieve noob what can i say.

Filter by:

226 - 226 of 226 Reviews for Custom Models, Layers, and Loss Functions with TensorFlow

By Goran I

Jan 4, 2025

I have a habit of reading course reviews before signing up for them. It helps me form an idea of its contents and decide whether to sign up and devote my time or not. I am seldom surprised much, but in the case of this course, I must admit I was amazed by the gap between the course rating and its content. I was aware, of course, of the 2-star review (by Irina G, posted on Nov 22, 2020) which, at that time, had by far the most votes: 18. The next most upvoted review (by Giora S, Jan 7, 2021) had 7 votes and it also gave only 3-stars. At that time, I was not alarmed by the fact that the most upvoted review giving 5 stars to the course had only 3 votes. Although it is somewhat surprising, I can understand that many people may feel good about a course just because it is easy to pass and, consequently, have a course like this have a rating of 4.9. But how does Coursera select top reviews with 5-stars and only very few upvotes is beyond me. This really makes me reconsider Coursera's rating system. I fully agree with Irina G's review. Could add few more observations of mine, but I do not see the point. I really appreciate the mission of Coursera, the effort made by the lecturers to prepare a course and the fact that we can listen to it for a comparatively very low price. But having Laurence read pre-written text from a screen with generic statements, explaining virtually nothing other than reading the code taken in large part from Keras tutorials which, at least, have explanations, is quite surprising. Even more so considering its rating is pumped up to 4.9.